coding
有趣的算法题
leetcode Fizz Buzz 问题
./fizz-buzz.js
寻找首次匹配子序列
// input [3,2,7,21,9,3,1,5,8,3],[3,1,5]
// 查找符合 3,1,5 的首次索引
console.log(1)
字符串/数组处理
- 3. 无重复字符的最长子串
- 难度:中等
- 考点:滑动窗口、哈希表
- 应用场景:前端字符串处理、性能优化
暴力
function lengthOfLongestSubstring (s: string): number {
let maxLength = 0
let currentStr = ''
for (const char of s) {
const index = currentStr.indexOf(char)
if (index >= 0) {
currentStr = currentStr.slice(index + 1)
}
currentStr = `${currentStr}${char}`
if (currentStr.length > maxLength) {
maxLength = currentStr.length
}
}
return maxLength
}
滑动窗口
function lengthOfLongestSubstring (s: string): number {
const seen = new Map<string, number>()
let start = 0
let maxLength = 0
for (let end = 0; end < s.length; end++) {
const char = s[end]
// If we've seen this char and it's after our current start,
// move start to after the last occurrence
if (seen.has(char) && seen.get(char)! >= start) {
start = seen.get(char)! + 1
}
seen.set(char, end)
maxLength = Math.max(maxLength, end - start + 1)
}
return maxLength
}
记忆技巧:
- 双指针 start / end
- 当遇到重复的,更新 start 到上一次出现的下一位
- 判断重复,记住是动态的窗口,额外判断 lastSeen >= start
- 5. 最长回文子串
- 难度:中等
- 考点:动态规划、中心扩展
- 应用场景:文本处理、算法优化
暴力
// 暴力 x 2
function isPalindromic (s: string) {
return s === s.split('').reverse().join('')
}
// 递归
function isPalindrome (s: string, start: number, end: number): boolean {
if (start >= end) return true
if (s[start] !== s[end]) return false
return isPalindrome(s, start + 1, end - 1)
}
function longestPalindrome (s: string): string {
let longest = ''
for (let start = 0; start < s.length; start++) {
let str = s[start]
for (let end = start + 1; end < s.length; end++) {
str = `${str}${s[end]}`
if (isPalindromic(str) && str.length > longest.length) {
longest = str
}
}
}
return longest
}
中心扩展
function longestPalindrome (s: string): string {
if (s.length < 2) return s
let start = 0; let maxLength = 1
function expandAroundCenter (left: number, right: number): void {
// 从中心向两边扩展,直到不是回文
while (left >= 0 && right < s.length && s[left] === s[right]) {
const currentLength = right - left + 1
if (currentLength > maxLength) {
start = left
maxLength = currentLength
}
left--
right++
}
}
// 遍历每个可能的中心点
for (let i = 0; i < s.length; i++) {
expandAroundCenter(i, i) // 奇数长度的回文
expandAroundCenter(i, i + 1) // 偶数长度的回文
}
return s.substring(start, start + maxLength)
}
动态规划
function longestPalindrome (s: string): string {
const n = s.length
if (n < 2) return s
// dp[i][j] 表示 s[i..j] 是否为回文串
const dp: boolean[][] = Array(n)
.fill(0)
.map(() => Array(n).fill(false))
// 单个字符都是回文串
for (let i = 0; i < n; i++) {
dp[i][i] = true
}
let start = 0
let maxLength = 1
// 枚举子串长度
for (let len = 2; len <= n; len++) {
// 枚举起始位置
for (let i = 0; i < n - len + 1; i++) {
const j = i + len - 1 // 终止位置
if (len === 2) {
dp[i][j] = s[i] === s[j]
} else {
dp[i][j] = dp[i + 1][j - 1] && s[i] === s[j]
}
if (dp[i][j] && len > maxLength) {
start = i
maxLength = len
}
}
}
return s.substring(start, start + maxLength)
}
数据结构
- 146. LRU 缓存
- 难度:中等
- 考点:哈希表、双向链表
- 应用场景:前端缓存实现、性能优化
class Node {
key: number
value: number
prev: Node | null
next: Node | null
constructor (key: number, value: number) {
this.key = key
this.value = value
this.prev = null
this.next = null
}
}
class LRUCache {
private cache: Map<number, Node>
private capacity: number
private head: Node
private tail: Node
constructor (capacity: number) {
this.cache = new Map<number, Node>()
this.capacity = capacity
this.head = new Node(0, 0)
this.tail = new Node(0, 0)
this.head.next = this.tail
this.tail.prev = this.head
}
private removeNode (node: Node) {
node.prev!.next = node.next
node.next!.prev = node.prev
}
private addToFront (node: Node) {
node.next = this.head.next
node.prev = this.head
this.head.next!.prev = node
this.head.next = node
}
get (key: number): number {
const node = this.cache.get(key)
if (!node) return -1
this.updateUsed(node)
return node.value
}
private updateUsed (node: Node) {
this.removeNode(node)
this.addToFront(node)
}
put (key: number, value: number): void {
if (this.cache.has(key)) {
const node = this.cache.get(key)!
node.value = value
this.updateUsed(node)
return
}
const newNode = new Node(key, value)
this.cache.set(key, newNode)
this.addToFront(newNode)
if (this.cache.size > this.capacity) {
const lru = this.tail.prev!
this.removeNode(lru)
this.cache.delete(lru.key)
}
}
}
- 208. 实现 Trie (前缀树)
- 难度:中等
- 考点:前缀树、字符串查找
- 应用场景:搜索提示、自动完成
o(n)
class Trie {
data: string[] = []
constructor () {
}
insert (word: string): void {
this.data.push(word)
}
search (word: string): boolean {
return this.data.includes(word)
}
startsWith (prefix: string): boolean {
return this.data.some(i => i.startsWith(prefix))
}
}
o(1)
class TrieNode {
children: Map<string, TrieNode> = new Map()
isEndOfWord = false
}
class Trie {
root: TrieNode = new TrieNode()
insert (word: string): void {
let currentNode = this.root
for (const char of word) {
if (!currentNode.children.has(char)) {
currentNode.children.set(char, new TrieNode())
}
currentNode = currentNode.children.get(char)
}
currentNode.isEndOfWord = true
}
traverse (word: string): TrieNode | null {
let currentNode = this.root
for (const char of word) {
if (!currentNode.children.has(char)) {
return null
}
currentNode = currentNode.children.get(char)
}
return currentNode
}
search (word: string): boolean {
const node = this.traverse(word)
return node !== null && node.isEndOfWord
}
startsWith (prefix: string): boolean {
const node = this.traverse(prefix)
return node !== null
}
}
异步编程
- Promise 实现
- 难度:中等
- 考点:Promise、异步编程
- 应用场景:异步请求处理、并发控制
Promise.all
function promiseAll<T> (promises: Promise<T>[]): Promise<T[]> {
return new Promise((resolve, reject) => {
if (promises.length === 0) {
resolve([])
return
}
const results: T[] = new Array(promises.length)
let completedCount = 0
promises.forEach((promise, index) => {
Promise.resolve(promise)
.then(value => {
results[index] = value
completedCount++
if (completedCount === promises.length) {
resolve(results)
}
})
.catch(reject)
})
})
}
限制并发的 Promise
async function promiseLimit<T> (
promises: (() => Promise<T>)[],
limit: number
): Promise<T[]> {
const results: T[] = []
const executing: Promise<void>[] = []
for (const [index, promiseFunc] of promises.entries()) {
const p = Promise.resolve()
.then(() => promiseFunc())
.then(
result => { results[index] = result }
)
.finally(() => {
const i = executing.indexOf(p)
if (i !== -1) executing.splice(i, 1)
})
executing.push(p)
if (executing.length >= limit) {
await Promise.race(executing)
}
}
await Promise.all(executing)
return results
}
算法思维
- 46. 全排列
- 难度:中等
- 考点:回溯算法
- 应用场景:组合状态管理、路径规划
暴力 O(n * n!)
function permute (nums: number[]): number[][] {
let current = [[]]
for (const num of nums) {
const nextLevel = []
for (const combo of current) {
// 对于每个位置(包括末尾)插入新元素
for (let i = 0; i <= combo.length; i++) {
nextLevel.push([
...combo.slice(0, i),
num,
...combo.slice(i)
])
}
}
current = nextLevel
}
return current
}
回溯算法 O(n!)
/*
[]
├── [1]
│ ├── [1,2]
│ │ └── [1,2,3]
│ └── [1,3]
│ └── [1,3,2]
├── [2]
│ ├── [2,1]
│ │ └── [2,1,3]
│ └── [2,3]
│ └── [2,3,1]
└── [3]
├── [3,1]
│ └── [3,1,2]
└── [3,2]
└── [3,2,1]
*/
function permute (nums: number[]): number[][] {
const result: number[][] = []
function backtrack (path: number[], used: Set<number>) {
if (path.length === nums.length) {
result.push([...path])
return
}
// 尝试每个数字
for (const num of nums) {
if (used.has(num)) continue
path.push(num)
used.add(num)
backtrack(path, used)
path.pop()
used.delete(num)
}
}
backtrack([], new Set())
return result
}
- 200. 岛屿数量
- 难度:中等
- 考点:DFS、BFS
- 应用场景:图形处理、连通性问题
dfs
function numIslands (grid: string[][]): number {
if (grid.length === 0) return 0
const rows = grid.length
const cols = grid[0].length
let count = 0
// DFS遍历整个岛屿并标记
const dfs = (row: number, col: number) => {
// 边界检查或已访问(水域)
if (row < 0 || row >= rows || col < 0 || col >= cols || grid[row][col] === '0') {
return
}
grid[row][col] = '0'
// 四个方向DFS
dfs(row - 1, col) // 上
dfs(row + 1, col) // 下
dfs(row, col - 1) // 左
dfs(row, col + 1) // 右
}
// 遍历网格
for (let row = 0; row < rows; row++) {
for (let col = 0; col < cols; col++) {
if (grid[row][col] === '1') {
count++
dfs(row, col)
}
}
}
return count
}
bfs
function numIslands (grid: string[][]): number {
if (grid.length === 0) return 0
const rows = grid.length
const cols = grid[0].length
let count = 0
// BFS遍历岛屿
const bfs = (row: number, col: number) => {
const queue = [[row, col]]
grid[row][col] = '0'
while (queue.length) {
const [currRow, currCol] = queue.shift()!
// 四个方向
const directions = [[-1, 0], [1, 0], [0, -1], [0, 1]]
for (const [dx, dy] of directions) {
const newRow = currRow + dx
const newCol = currCol + dy
if (newRow >= 0 && newRow < rows &&
newCol >= 0 && newCol < cols &&
grid[newRow][newCol] === '1') {
queue.push([newRow, newCol])
grid[newRow][newCol] = '0' // 入队时就标记
}
}
}
}
for (let row = 0; row < rows; row++) {
for (let col = 0; col < cols; col++) {
if (grid[row][col] === '1') {
count++
bfs(row, col)
}
}
}
return count
}
动态规划
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
- 难度:简单
- 考点:动态规划
- 应用场景:基础算法训练
function climbStairs (n: number): number {
if (n <= 2) {
return n
}
const dp = Array(n).fill(0)
dp[0] = 1
dp[1] = 2
for (let i = 2; i < n; i++) {
dp[i] = dp[i - 1] + dp[i - 2]
}
return dp[dp.length - 1]
}
设计题
- 355. 设计推特
- 难度:中等
- 考点:系统设计、数据结构
- 应用场景:社交媒体功能实现
type Tweet = {
id: number
userId: number
}
class Twitter {
private tweets: Tweet[] = []
private following: Map<number, number[]> = new Map()
postTweet (userId: number, tweetId: number): void {
this.tweets.unshift({
id: tweetId,
userId
})
}
getNewsFeed (userId: number): number[] {
const following = this.following.get(userId) || []
const userList = [
...following,
userId
]
return this.tweets.filter(t => userList.includes(t.userId))
.map(t => t.id)
.slice(0, 10)
}
follow (followerId: number, followeeId: number): void {
const following = this.following.has(followerId)
? this.following.get(followerId)
: []
if (!following.includes(followeeId)) {
following.push(followeeId)
this.following.set(followerId, following)
}
}
unfollow (followerId: number, followeeId: number): void {
const following = this.following.has(followerId)
? this.following.get(followerId)
: []
if (following.includes(followeeId)) {
this.following.set(
followerId,
following.filter(f => f !== followeeId)
)
}
}
}
树操作
- 236. 二叉树的最近公共祖先
- 难度:中等
- 考点:树的遍历、递归
- 应用场景:DOM树操作、组件树处理